МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЯРОСЛАВСКАЯ ГОСУДАРСТВЕННАЯ СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ» (ФГБОУ ВО Ярославская ГСХА)

ПРОБЛЕМЫ ЭЛЕКТРИФИКАЦИИ СЕЛЬСКОГО ХОЗЯЙСТВА

Сборник научных трудов по материалам Всероссийской научно-практической конференции 15 ноября 2017 г.

Ярославль 2018

- 3. Яхтанигова, Ж.М. Сельскохозяйственная биотехнология [Текст]: учебное пособие / Ж.М. Яхтанигова, Л.А. Манохина, Е.Г. Федорчук, И.А. Навальнева, И.В. Мирошниченко. Белгород: Изд-во Белгородского ГАУ, 2016. 172 с.
- 4. Пат. 171741 Российская Федерация, МПК–2016.01 С02F11/04. Многокамерный биогазовый реактор непрерывной загрузки сырья: [Текст] / С.В. Вендин, А.Ю. Мамонтов, Н.О. Шаршуков, А.В. Каплин: заявитель и патентообладатель Федеральное государственное бюджетное образовательное учреждение высшего образования «Белгородский государственный технологический университет» № 2017100834, 20.03.2013, заявл. 10.01.2017, опубл. 14.06.2017.
- 5. Вендин, С.В. Программа расчета геометрических и конструкционных параметров биогазового реактора [Текст] / С.В. Вендин, А.Ю. Мамонтов, А.В. Каплин // Промышленная энергетика. -2017.- № 3.- C. 51–55.
- 6. Вендин, С.В. Электрооборудование биогазового реактора [Текст] / С.В. Вендин, А.Ю. Мамонтов // Сельский механизатор. 2017. № 5. С. 26–27.
- 7. Вендин, С.В. Расчет мощности дополнительных источников теплоты для подогрева биомассы в биогазовом реакторе [Текст] / С.В. Вендин, А.Ю. Мамонтов // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. $-2017.- \text{Ne}\ 7.-\text{C}.\ 97-99.$

УДК 620.9-62-93

УСТАНОВКА ДЛЯ ПРОИЗВОДСТВА АЛЬТЕРНАТИВНОГО ТОПЛИВА (БИОТОПЛИВО III ПОКОЛЕНИЯ) К КОМПЛЕКСАМ – СИЛОВОЙ АГРЕГАТ – ГЕНЕРАТОР

д.т.н. В.А. Милюткин (ФГБОУ ВО Самарская ГСХА, Самара, Россия), И.В. Бородулин, Е.А. Агарков (ООО «ЭКОВОЛГА», Самара, Россия)

Ключевые слова: водоросли, биореактор, биотопливо, силовой агрегат, генератор, электроэнергия.

Предложено техническое устройство по производству биотоплива III поколения из сине-зеленых водорослей (цианобактерий)

для силовых станций (двигателей) с генераторами, вырабатывающими электроэнергию для народного хозяйства.

INSTALLATION FOR PRODUCTION OF ALTERNATIVE FUEL (BIOFUEL III GENERATION) TO COMPLEXES – POWER UNIT – GENERATOR

Doctor of Technical Sciences V.A. Milyutkin (FSBEI HE Samara SAA, Samara, Russia), I.V. Borodulin, E.A. Agarkov (LLS "EKOVOLGA", Samara, Russia)

Key words: algae, bioreactor, biofuel, power unit, generator, electric power.

A technical device for production of third-generation biofuel from blue-green algae (cyanobacteria) for power stations (engines) with generators producing electricity for the national economy was proposed.

Одним из значительных и восполняемых видов энергии является биотопливо, в последнее время исследования в РФ ведутся по получению биотоплива 3-го поколения, получаемого из растительной массы и в первую очередь из сине-зеленых водорослей — цианобактерий, при переработке которых, по американским исследованиям, можно получить до 1/3 нынешних используемых углеводородных источников.

Самарская сельхозакадемия и ООО «ЭКОВОЛГА» (г. Самара) проводят самостоятельные исследования по созданию технологий и устройств сбора сине-зеленых водорослей, их сушки и переработки в биотопливо 3-го поколения [1–4].

Технические средства для сбора водорослей, разработанные в ООО «ЭКОВОЛГА», представляют собой устройства для глубинного илового сбора, поверхностного сбора, объемного сбора с глубины 0–1,5 м. Также в ООО «ЭКОВОЛГА» разработаны конструкции сушилок для водорослей [11], способ и устройство для наращивания массы водорослей и переработки их в биотопливо 3-го поколения [12, 13].

Для переработки сине-зеленых водорослей предлагается устройство [12] для утилизации продуктов сгорания энергоустановок (рисунок 1), которое содержит вытяжной вентилятор 1, магистраль 2

подвода углекислого газа из дымовой трубы 3 ГРЭС 4 в фитореактор 17 и биореактор 8, соединенный с вытяжным вентилятором фильтрнакопитель 5, соединенный подводящим трубопроводом 6 с фитореактором 17 и/или со шлюзовой емкостью водоема, а подающим трубопроводом 7 соединенный с биореактором 8, в котором имеется компрессор 9 для создания повышенного давления в реакторе и свечи с несгораемыми электродами 10, биореактор 8, соединенный трубопроводом 11 с ректификационной колонной 12. Фитореактор 17 содержит источники света 13. Ректификационная колонна 12 имеет штуцеры 14 и 15 для отвода из колонны осадка и загрязненных фракций и штуцер 16 для отвода этанола.

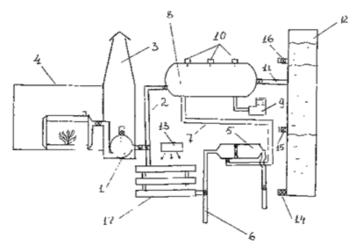


Рисунок 1 — Установка для производства биотоплива (этанол) из сине-зеленых водорослей с активизацией их роста углекислым газом из продуктов горения (природный газ) тепловой электростанции — ГРЭС

Нами разработана более детальная конструкция биореактора 8 (I) [14] для производства биотоплива III поколения из сине-зеленых водорослей для двигателей внутреннего сгорания (II) ДВС с генераторами (III), производящими в итоге электроэнергию для народного хозяйства (рисунок 2).

Поставленная задача решается устройством для переработки сине-зеленых водорослей в биотопливо III поколения, содержащим емкость с сине-зелеными водорослями, соединенную трубопроводом с биореактором, в котором имеются свечи с несгораемыми электродами для осуществления плазменной обработки концен-

трата водорослей, соединенным трубопроводом с ректификационной колонной, причем устройство содержит бак с гидравлическим маслом, соединенный трубопроводом высокого давления с гидроцилиндром, шток поршня гидроцилиндра шарнирно соединен с одним концом коромысла, закрепленного на стойке с возможностью поворота вокруг оси, второй конец коромысла шарнирно соединен со штоком поршня биореактора, соединенного трубопроводом высокого давления с гидроцилиндром, подпоршневое пространство биореактора содержит упомянутые свечи, для питания которых установлен блок конденсаторов, а коромысло выполнено с возможностью регулировки длины плеч.

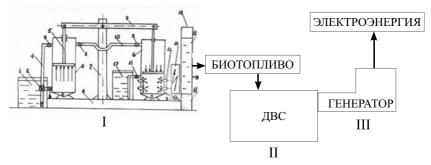


Рисунок 2 — Технологическая схема выработки электроэнергии генератором III от двигателя внутреннего сгорания II и установки I, вырабатывающей биотопливо III поколения

Устройство для переработки сине-зеленых водорослей в биотопливо III поколения содержит емкость 17 с сине-зелеными водорослями, соединенную трубопроводом с насосом 11 высокого давления с биореактором 6, в котором имеются свечи 12 с несгораемыми электродами для осуществления плазменной обработки концентрата водорослей. Биореактор соединен трубопроводом с ректификационной колонной 14, причем устройство содержит бак 1 с гидравлическим маслом, соединенный трубопроводом 4 высокого давления с гидроцилиндром 6, шток 5 поршня гидроцилиндра шарнирно соединен с одним концом коромысла 9, закрепленного на стойке 7 с возможностью поворота вокруг оси, второй конец коромысла шарнирно соединен со штоком поршня биореактора, соединенного трубопроводом 10 высокого давления с гидроцилиндром, подпоршневое пространство биореактора содержит свечи 12, для питания которых установлен блок 13 конденсаторов, а коро-

мысло 9 выполнено с возможностью регулировки длины плеч для получения заданного давления на массу сине-зеленых водорослей в подпоршневом пространстве биореактора. Для создания давления масла на поршень гидроцилиндра 6 служит масляный насос 2 высокого давления. Для управления потоками служат краны 3. В ректификационной колонне происходит разделение фракций на отстоявшиеся примеси 11 и отстоявшееся масло — биотопливо III поколения. Стойка 7 закреплена на опорной площадке 8.

Предлагаемое устройство работает следующим образом. После выращивания сине-зеленых водорослей с последующим получением биотоплива производят закачку массы водорослей в емкость 17. Гидравлическое масло из бака 1 насосом 2 высокого давления через краны 3 поступает в гидроцилиндр 6 и биореактор. Шток 5 гидроцилиндра 6 через коромысло 9 воздействует на шток биореактора, сжимая вподпоршневой полости биореактора поступившую из емкости 17 через насос высокого давления смесь сине-зеленых водорослей. Под двойным действием от нагнетаемого насосом 2 масла и коромысла 9 смесь сине-зеленых водорослей сжимается в полости биореактора, дополнительное давление на смесь оказывает насос 3. Через доведенную до необходимого высокого давления смесь (20-35 атмосфер) проходит искра от свечей 12, создающих высокую температуру (примерно 350 градусов). Под действием высокой температуры и давления из сине-зеленых водорослей выделяется так называемое «масло» – биотопливо III поколения. Переработанная смесь с выделенным биотопливом поступает в ректификационную колонну 14, где оно разделяется на чистое масло и примеси – отстой. Биореактор представляет собой цилиндрическую емкость из нержавеющей стали с системами, обеспечивающими плазменную обработку концентрата водорослей путем работы в заданной последовательности несгораемых электродов, установленных внутри биореактора, где концентрат водорослей под повышенным давлением обрабатывается плазмой. Регулировка длины плеч коромысла (для получения заданного давления в биореакторе) может производиться, например, путем смещения положения оси на коромысле 9 в ту или другую сторону. При этом стойка 7 также будет смещена на опоре 8 и закреплена на ней заново.

Предлагаемая полезная модель позволяет повысить выход биотоплива III поколения из смеси сине-зеленых водорослей до 50–60% от массы водорослей.

Литература

- 1. Милюткин, В.А. Технические средства для обеспечения безопасной экологической среды в водоемах [Текст] / В.А. Милюткин, И.В. Бородулин, З.П. Антонова, Н.Ф. Стребков // Прикладные науки и технологии в США и Европе, общие проблемы и научные открытия. США: Нью-Йорк, 25.06.2014. С. 216—220.
- 2. Патент № 2548075 Российская Федерация, МПК С02Р 3/00. Устройство для очистки водоемов от сине-зеленых водорослей с помощью биопрепарата / Милюткин В.А., Стребков Н.Ф., Котов Д.Н.; заявл. 24.06.2013; опубл. 10.04. 2015, Бюл. № 10.-5 с.
- 3. Патент № 2551172 Российская Федерация, МПК С02Р 3/00 Устройство для очистки водоемов от сине-зеленых водорослей / Милюткин В.А., Стребков Н.Ф., Бородулин И.В., Котов Д.Н.; заявл. 28.01.2014; опубл. 20.05.2015, Бюл. № 14.-5 с.
- 4. Патент № 2555896 Российская Федерация, МПК С 02 Р 1/00. Устройство для очистки водоемов от сине-зеленых водорослей / Милюткин В.А., Стребков Н.Ф., Бородулин И.В.; заявл. 20.02.2014, опубл. 10.07.2015, Бюл. № 19.-5 с.
- 5. Патент № 2582365. Российская Федерация, МПК Е 02B15/10, Устройство для очистки водоемов от сине-зеленых водорослей / Милюткин В.А., Стребков Н.Ф., Бородулин И.В.: заявл. 31.07.2014; опубл. 20.02.2016, Бюл. № 5.-5 с.
- 6. Патент № 2596017. Российская Федерация, МПК E02B15/00, A01Д 44/00. Агрегат для очистки водоемов от водорослей / Милюткин В.А., Стребков Н.Ф., Котов Д.Н., Бородулин И.В.; заявл. 28.05.2015; опубл. 27.08.2016, Бюл. № 24. -5 с.
- 7. Милюткин, В.А. Технологии и технические средства механического сбора сине-зеленых водорослей в водоеме [Текст] / В.А. Милюткин, Г.В. Кнурова, С.П. Симченкова, В.Н. Сысоев, И.В. Бородулин, З.П. Антонова // Сборник научных статей по итогам международной научно-практической конференции (28–29 марта 2014 г.). СПб., 2014. С. 79–82.
- 8. Милюткин, В.А. Техническое устройство и технология для биологической (химической, бактериологической) борьбы с сине-зелеными водорослями [Текст] / В.А. Милюткин, С.П. Симченкова, Г.В. Кнурова и др. // Сборник научных статей по итогам международной научно-практической конференции (28–29 марта 2014 г.). СПб., 2014. С. 83–85.
- 9. Милюткин, В.А. Технологии и технические средства (на уровне изобретений патентов) эффективного исполь-

зования сине-зеленых водорослей (цианобактерий) [Текст] / В.А. Милюткин, И.В. Бородулин //American Journalof Scienceand Technologies. -2015. - T. 2. - № 2 (20). - C. 595-601.

- 10. Милюткин, В.А. Энергосберегающая технология сбора и утилизации сине-зеленых водорослей с открытых водных поверхностей мобильным, автономным комплексом [Текст] / В.А. Милюткин, И.В. Бородулин // Международная научно-практическая конференция «Энергосбережение в сельском хозяйстве» (25–26 ноября 2015 г.). Ярославль, 2015. С. 45–52.
- 11. Патент № 2606811. Российская Федерация, МПК А01Д 44/00. Сушилка для сине-зеленых водорослей / Милюткин В.А., Бородулин И.В., Стребков Н.Ф., Антонова З.П.; заявл. 13.08.2015: опубл. 10.01.2017. Бюл. № 1. 5 с.
- 12. Патент № 2599436. Российская федерация, МПК С 12 М 1/04, А 01 С 7/02. устройство для утилизации продуктов сгорания энергоустановок, использующих природный газ / Бородулин И.В., Милюткин В.А., Антонова З.П., Панкеев С.А.; заявл. 04.08.2015, опубл. 10.10.2016. Бюл. № 5. 5 с.
- 13. Патент № 2608495. Российская федерация, МПК А 01Q 7/02, А 01Q 33/00, С 12N 1/12, С 12М 1/04. Способ утилизации продуктов сгорания установок, использующих природный газ.: заявл. 04.08.2015; опубл. 18.01.2017. Бюл. № 2. 5 с.
- 14. Заявка на полезную модель № 2017126694. Российская Федерация. Устройство для переработки синезеленых водорослей в биотопливо. заявл. 25.07.2017.

УДК 631.371

РОЛЬ ПРИМЕНЕНИЯ ГЕОТЕРМАЛЬНОЙ СИСТЕМЫ ОТОПЛЕНИЯ НА ПРЕДПРИЯТИЯХ АПК

д.т.н. Н.В. Нестерова, А.С. Галеженко (ФГБОУ ВО Белгородский ГАУ, п. Майский, Россия)

Ключевые слова: отопление, геотермальная энергия, чистые технологии.

В статье рассматривается роль применения геотермальной системы отопления предприятий аграрного сектора, особенности использования. Проанализированы характеристики и свойства